3.613 \(\int \frac{(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=337 \[ -\frac{2 (a-2 b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{d}+\frac{2 (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{d}-\frac{2 b \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{b};\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{d} \]

[Out]

(2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])
], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*(a -
2*b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((
a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*b*Sqrt[a +
b]*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a
+ b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d

________________________________________________________________________________________

Rubi [A]  time = 0.471292, antiderivative size = 337, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2798, 2809, 2998, 2816, 2994} \[ -\frac{2 (a-2 b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{d}+\frac{2 (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{d}-\frac{2 b \sqrt{a+b} \cot (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{b};\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]

[Out]

(2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])
], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*(a -
2*b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((
a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*b*Sqrt[a +
b]*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a
+ b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d

Rule 2798

Int[((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> D
ist[d^2/b^2, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b^2, Int[Simp[b*
c + a*d + 2*b*d*Sin[e + f*x], x]/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rubi steps

\begin{align*} \int \frac{(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx &=a \int \frac{a+2 b \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx+b^2 \int \frac{\sqrt{\cos (c+d x)}}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=-\frac{2 b \sqrt{a+b} \cot (c+d x) \Pi \left (\frac{a+b}{b};\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{d}+a^2 \int \frac{1+\cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx-(a (a-2 b)) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{2 (a-b) \sqrt{a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{d}-\frac{2 (a-2 b) \sqrt{a+b} \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{d}-\frac{2 b \sqrt{a+b} \cot (c+d x) \Pi \left (\frac{a+b}{b};\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{d}\\ \end{align*}

Mathematica [A]  time = 12.8083, size = 359, normalized size = 1.07 \[ \frac{\cos (c+d x) \left (\frac{2 \left (a^2+2 a b-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} F\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )}{\sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}}}-2 a^2 \tan \left (\frac{1}{2} (c+d x)\right )-\frac{4 b^2 \sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} \Pi \left (-1;-\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )}{\sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}}}+a b \tan \left (\frac{1}{2} (c+d x)\right )-a b \sin \left (\frac{3}{2} (c+d x)\right ) \sec \left (\frac{1}{2} (c+d x)\right )-\frac{2 a (a+b) \sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} E\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )}{\sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}}}\right )+2 a \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]

[Out]

(2*a*(a + b*Cos[c + d*x])*Sin[c + d*x] + Cos[c + d*x]*((-2*a*(a + b)*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + C
os[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)])/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] +
(2*(a^2 + 2*a*b - b^2)*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/
2]], (-a + b)/(a + b)])/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - (4*b^2*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 +
 Cos[c + d*x]))]*EllipticPi[-1, -ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)])/Sqrt[Cos[c + d*x]/(1 + Cos[c + d
*x])] - a*b*Sec[(c + d*x)/2]*Sin[(3*(c + d*x))/2] - 2*a^2*Tan[(c + d*x)/2] + a*b*Tan[(c + d*x)/2]))/(d*Sqrt[Co
s[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.457, size = 1183, normalized size = 3.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x)

[Out]

-2/d*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d*x+c)*
EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2+2*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*
(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin
(d*x+c)*a*b-cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Ellip
ticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*b^2-cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1
/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))
*sin(d*x+c)*a^2-cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*E
llipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b+2*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+
b))^(1/2))*sin(d*x+c)*b^2+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*El
lipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1
/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*s
in(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(
d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*
x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)-(cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c)
,(-(a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)+2*b^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos
(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*sin(d*x+c)+cos(d*x+c)^2*a*b+a^2
*cos(d*x+c)-cos(d*x+c)*a*b-a^2)/(a+b*cos(d*x+c))^(1/2)/sin(d*x+c)/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \cos{\left (c + d x \right )}\right )^{\frac{3}{2}}}{\cos ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(3/2)/cos(d*x+c)**(3/2),x)

[Out]

Integral((a + b*cos(c + d*x))**(3/2)/cos(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(3/2), x)